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The semiempirical diatomics in molecules (DIM) approach is used to model the potential surface for ground-
state vibration of a linear I3 molecule. We use this system to explore semiclassical methods for treating
quantal nuclear vibrations by computing the photoelectron spectrum of I3

- which produces vibrationally excited
I3 . We compare semiclassical results with full quantum calculations and experimental results recently reported
by Neumark and co-workers. (Taylor, T. R.; Asmis, K.R.; Zanni, M. T.; Neumark, D. M.J. Chem. Phys.
1999, 110, 7607.)

1. Introduction
Since the 1950s the existence of the triiodide radical has been

proposed as an intermediate species to explain how iodine atoms,
produced by photodissociating I2, can recombine in the gas phase
to reproduce the diatomic species. The accepted mechanism
involves an I• radical first colliding I2 to form stable I3 which
subsequently undergoes collision with another I• radical, then
this collision complex breaks apart to give two I2 molecules.
Despite its proposed importance in this most fundamental
reaction of gas-phase chemical kinetics, direct experimental
observation of the I3 molecule has only very recently been
accomplished in the high-resolution photoelectron spectroscopy
studies of Neumark and co-workers.1

The first goal of this paper is to demonstrate that a very simple
description of the I3 molecule offered by the semiempirical
diatomics-in-molecules (DIM) approach is actually capable of
providing a very reliable representation of this molecule,
reproducing the recently measured binding energies, and
vibrational frequencies with surprising accuracy.

Next we summarize how time dependent perturbation theory
can be used to compute the distribution of ejected photoelectron
kinetic energyPâ(ε) in the thermal equilibrium photoelectron
spectrum of I3- in which vibrationally hot I3 is produced
according to the following process:

Finally we will compare the results of fully quantum dynamical
calculations of this photoelectron spectrum, with classical and
semiclassical calculations of the I3 vibrational dynamics probed
by these measurements, and we compare our theoretical results
with the experimental photoelectron spectrum of Neumark and
co-workers.1

2. Methods
2.1. A DIM Potential Model for Ground Electronic State

Intramolecular Vibrations of I 3. The model assumes that the
I3 molecule is linear, hence the projection of the total angular
momentum of the system into the molecular axis is a good
quantum number. Following the same scheme used in previous
work2 we write the basis set as Hund’s case C kets

where Jk and mjk are the total angular momentum and it’s
projection on the molecular axis for each of the iodine atoms.
Our purpose in this paper is to focus on the properties of the
ground electronic state of I3, hence we will reduce our basis
set to a minimum subspace that will include only the necessary
kets mixing to form this lowest energy eigenstate. Thus the
approach we present here will not produce all the subsequent
excited states, but only some of them.

We suppose that the ground-state eigenket has total angular
momentum projection

so only kets satisfying this condition will combine to generate
this assumed lowest energy eigenstate.3 Our knowledge of the
ground-state dissociation limits of the I3 radical can be used to
further limit the basis set. Thus if one of the bonds is stretched,
the molecule should dissociate to ground-state I2 and an I• radical
species. The ground state of I2 in our representation is

and the I• radical ground state is

These considerations thus enable us to limit the basis kets to
only those having all theJk ) 3/2 and themjk ) (1/2. This
procedure is only valid in the gas phase, in solution other states
that we are not including in the calculations described here will
be coupled by anisotropic interactions with the solvent and thus
make contributions to the lowest energy solution phase eigenket,
but this is beyond the scope of the current paper.

The DIM Hamiltonian operator has the form4,5

and we choose the zero in energy to be that of the isolated I•

radicals; therefore, the second sum in the above expression can
be disregarded. For convenience in the notation we will drop
theJ index in the angular momentum expression since it is the

I3
-(therm)+ pν f I3(vib) + e-(ε) (1)

|J1mj1〉|J2mj2〉|J3mj3〉 ) |J1mj1, J2mj2, J3mj3〉

MJ ) ∑
k)1

3

mjk ) (1/2

1/x2(|3/2,1/2〉|3/2,-1/2〉 - |3/2,-1/2〉|3/2,1/2〉)

|3/2 ( 1/2〉

∑
i<j

Ĥi, j - n∑
i

Ĥi (2)
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same for all iodine atoms and we will only label them by their
values ofmjk.

In the gas phase the I3 ground state can have totalMJ )
(1/2, both angular momentum orientation states are degenerate
and uncoupled, thus we need only consider the one with total
MJ ) 1/2. The only basis kets to consider now are the following:

Any matrix element between them will be of the form

i.e., an I2 matrix element times aδ(mj,m′j).
The full electronic Hamiltonian matrix thus becomes

Where R1 is the distance from the I atom at one end of the
molecule to the central one, R2 is the distance from the I atom
at the other end to the central atom, and R3 is the distance
between the two I atoms at opposite ends of the molecule. Using
Table 1 in ref 2 and performing some simple algebra we find
the matrix elements to be

for which experimental values are available in Batista and
Coker’s2 paper and the references therein.

The electronic ground-state surface of I3 is thus obtained by
simply diagonalizing the 3× 3 matrix whose elements are
summarized above and selecting the lowest energy eigenvalue.
In Figure 1 we display the elements of our reduced DIM
Hamiltonian matrix as functions of R1 and R2 while Figure 2
shows the electronic ground state of I3 calculated from these
matrix elements as described above. Table 1 summarizes various
properties of this ground-state I3 potential and compares these
results with the experimental values.1 This table also summarizes
various properties of the I3

- potential which we need to prepare
the initial state for our photoelectron spectrum studies.

The symmetric stretch frequency of I3 obtained from these
calculations is about 10% too high, and the dissociation energy
to I2 and an I• radical is also a little high but with in the reported
experimental uncertainty. Given the shapes of the various diabats
and coupling matrix elements presented in Figure 1, the accuracy

with which our DIM ground-state surface reproduces experi-
mental values is quite remarkable.

Our calculations assume that the I3 molecule is linear and
symmetric just like I3-. Thus the fact that the equilibrium
bond length we find for our model I3 molecule is about 0.1 Å
shorter than that of the parent I3

- means that when we
photoionize the anion via a vertical Franck-Condon excitation
we will extend the symmetric stretch mode of the resulting I3.
As we shall see in the detailed analysis of our calculated signals
we present in section 3, antisymmetric stretch components can
enter our signals through thermal populations of ground
electronic state antisymmetric stretch motions or through
nonlinear couplings between the symmetric and antisymmetric
modes as a result of motion over our fully nonlinearly coupled
I3 potential surface.

2.2. Semiclassical Computation of the Photoelectron Spec-
trum. For our purposes we view the photoionization reaction

as a process which takes the molecular ion systemA- from a
discrete electronic stateΦI to a continuum molecular ion
electronic stateΦFε by absorption of a photon. The final
continuum state is really a neutral moleculeA in one of its
discrete statesΦF and an ejected free electron with continuous
kinetic energyε. In the appendix we outline the time dependent
perturbation theory approach to computing the probability of
observing ejected photoelectrons with kinetic energyε obtained
by ionizing molecules prepared in a thermal distribution of
vibrational states moving on the ground electronic surface of
I3

- (stateI) and producing ground-state neutrals (stateF). There
we show that if we assume that the dipole matrix elements
connecting states I and F depend weakly on nuclear coordinates
and vary slowly with electronic kinetic energy,ε, (see appendix
for details), this probability is obtained as

where the thermally averaged dynamical correlation function
appearing in this expression is given by

{|-1/2,
1/2,

1/2〉; |1/2,-1/2,
1/2〉; |1/2,1/2,-1/2〉}

〈mj1,mj2,mj3|Ĥl,m|m′j1,m′j2,m′j3〉 )
〈mjl,mjm|Ĥl,m|m′jl,m′jm〉 × 〈mjn|m′jn〉

〈-1/2,
1/2,

1/2|Ĥ| - 1/2,
1/2,

1/2〉 ) 〈-1/2,
1/2|ĤR1| - 1/2,

1/2〉 +

〈1/2,
1/2|ĤR2|1/2,1/2〉 + 〈-1/2,

1/2|ĤR3| - 1/2,
1/2〉

〈1/2,-
1/2,

1/2|Ĥ|1/2,-1/2,
1/2〉 ) 〈1/2, -1/2|ĤR1|1/2,-1/2〉 +

〈-1/2,
1/2|ĤR2| - 1/2,

1/2〉 + 〈1/2,
1/2|ĤR3|1/2,1/2〉

〈1/2,
1/2,-

1/2|Ĥ|1/2,1/2,-1/2〉 ) 〈1/2,
1/2|ĤR1|1/2,1/2〉 +

〈1/2,-
1/2|ĤR2|1/2,-1/2〉 + 〈1/2,-

1/2|ĤR3|1/2,-1/2〉

〈-1/2,
1/2,

1/2|Ĥ|1/2,-1/2,
1/2〉 ) 〈-1/2,

1/2|ĤR1|1/2,-1/2〉

〈-1/2,
1/2,

1/2|Ĥ|1/2,1/2,-1/2〉 ) 〈-1/2,
1/2|ĤR3|1/2,-1/2〉

〈1/2,-
1/2,

1/2|Ĥ|1/2,1/2,-1/2〉 ) 〈-1/2,
1/2|ĤR2|1/2,-1/2〉

〈-1/2,
1/2|Ĥ| -1/2,

1/2〉 ) 1/2(E(13Σu
+) + E(X))

〈1/2,
1/2|Ĥ|1/2,1/2〉 ) E(1Πu)

TABLE 1: Comparison of Properties of Calculated DIM
Surface for I3 with Experimental Resultsa

parameters and results

item this paper Neumark’s results

symmetric frequency 126.1 cm-1 115( 5 cm-1

antisymmetric frequency 163.7 cm-1

dissociation energy I3 f I2 + I• 0.19157 eV 0.143( 0.06 eV
dissociation energy I3 f 3 I• 1.74723 eV
I3 equilibrium bond length 2.762 Å
I3 adiabatic EA 4.226 eV 4.226 eV
I3

- symmetric frequencyb 106.7 cm-1 112 cm-1

I3
- antisymmetric frequency 122.2 cm-1

-I3
- bond length 2.85 Å

τ 100 fs
pω 4.657 eV 4.657 eV

a The I3- potential is assumed to be quadratic in both symmetric
and antisymmetric coordinates to simplify the calculations.b Different
values for the symmetric and antisymmetric frequencies can be found
in the literature. See refs 6 and 7 and references therein.

A-(I) + pω f A(F) + e-(ε) (3)

Pâ
IF(ε) ∼

Re{∫0

∞
dtφIF(t;â) exp[- i

p
(ε - pω)t] exp[- t2

4τ2]} (4)

φIF(t;â) ) ∑
v

exp[-âEIv] exp[ i

p
EIvt] fF,Iv(t) (5)
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HereEIv is the energy of thevth vibrational eigenstate on the
initial electronic surfaceI, øIv(Q) is the corresponding nuclear

vibrational eigenstate on this surface, and the individual
vibrational component, excited electronic state propagated
correlation functions are

whereĤF is the Hamiltonian governing nuclear dynamics over
the excited electronic state potentialF. This correlation function
thus involves propagating the nuclear vibrational eigenstates of
the initial electronic surface over the final excited-state surface
and measuring the overlap of these propagated function at time
t with the initial wave function.

In our studies we will assume that the initial electronic surface
of the I3- can be approximated harmonically around its
equilibrium geometry and that this approximation will be reliable
for all the thermally accessible initial vibrational states at the
temperatures of interest. This approximation is expected to be

Figure 1. Elements of the DIM Hamiltonian used in our calculation of the collinear ground state electronic surface of I3 as a function of bond
lengths in Ångstroms.

Figure 2. DIM Ground-state electronic surface of I3 as a function of
bond lengths in Ångstroms.

fF,Iv(t) ) 〈øIv| exp[- i
p
ĤFt]|øIv〉 (6)
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reasonable for the deep I3
- ground-state surface. However,

vibrations on the I3 excited state surface are expected to be
highly anharmonic as motion on this surface is only very weakly
bound along certain directions as seen in Figure 2.

To simplify our calculations, we further assume that the
bending of the I3 molecule is not excited in these experiments
and that rotation-vibration coupling can be ignored. Thus we
need only the symmetric and antisymmetric stretch coordinates
to describe the anharmonic intramolecular vibrational dynamics
on the I3 potential surface. This reduces our intramolecular
vibrational problem to just two dimensions. We thus employ
the initial ground state normal mode coordinates of the system
in our quantum and semiclassical propagation calculations
detailed below.

The individual vibrational correlation functions given in eq
6 can be computed exactly using standard FFT grid propagation
methods8,9 and the results added according to eq 5 to give the
required thermal average correlation function. Such methods
are, however, generally only viable for systems of few dimen-
sions. Semiclassical methods based on propagating swarms of
classical trajectories and carefully adding up the semiclassical
phases associated with these trajectories to compute the ap-
proximate semiclassical dynamical wave function are in prin-
ciple applicable to systems with many more dimensions.

We now consider the implementation of the Herman-Kluk,
coherent state semiclassical propagator10-16 to compute the cor-
relation functions given above. With this approach the propaga-
tor describing nuclear vibrations on surface F has the form

where the coordinate state representation of the time dependent
coherent state basis set elements used in this description are
the Gaussian functions

whose time dependent center positionQt, and phasePt

parameters are the positions and momenta of simple classical
trajectories,γ is a constant arbitrary width parameter,S(P,Q,t)
) ∫dtPt

2(P,Q)/2M - EF(Qt(P,Q)) is the classical action along
the trajectory propagated over our final state surface, which
depends on the initial positionQ, and phase (momentum)P of
the given basis function, and the functionC(P,Q,t) is related to
the stability of the classical trajectory with respect to variations
in initial conditions as measured by the so-called monodromy
matrixes whose elements have the formMPQ

(ij )(P,Q,t) ) [∂Pt
i /

∂Qj](P,Q,t), for example. In all the calculations reported in this
paper we have used ensembles containing 1000 trajectories. The
quantityC(P,Q,t) which weights each trajectory’s contribution
to the semiclassical propagator in eq 7 is found to have the
form

The monodromy matrixes can be computed by integrating the
following auxiliary equations of motion which are determined
by the time dependent local curvature of the potential along
the classical trajectory

WhereN is a diagonal matrix with elements equal to the inverses
of the masses associated with the different particle coordinates,
andD(t) is the time dependent Hessian matrixD(ij )(t) ) [∂2V/
∂Qi∂Qj](Qt) computed at points along the classical trajectory.

Using the excited-state semiclassical nuclear propagator in
eq 7 we can express the correlation functions in eq 6 as

Here the classical trajectories swarm over the potential surface
associated with the final electronic stateF.

With the assumptions described earlier, our vibrational
eigenstates on surfaceI are products of harmonic oscillator
eigenfunctions in the symmetric and antisymmetric coordinates.
We can readily calculate the projections of these states onto
our coherent state basis set in these coordinates and after some
algebra we find for a given mode

where the harmonic oscillator wave functions have the form
ψV(x) ) NVHV(R(x - x0)) exp[-R2(x - x0)2/2] with R )
xmω/p, NV ) (Rxπ2VV!)-1/2 is a normalization constant,
HV(y) ) ∑0

Vcnyn are the hermite polynomials, andδ ) (2γ
+R2)-1. The polynomialsPn(g) result from the integrations and
generally satisfy the recursion relationPn+1(g) ) gPn(g) + (n
- 1)Pn-1(g) with P0 ) 1 andP1 ) g andg ) xδ[2γ(Q - x0)
- iP/p].

Despite the appeal of obtaining semiclassical quantum
dynamical effects by just averaging various dynamical quantities
over an ensemble of classically propagating trajectories labeled
by their initial conditions as, for example, in eq 12, the
implementation of such semiclassical expressions is plagued
with many serious numerical “traps for new players”. In the
discussion that follows we show how these problems arise in
our application to the dynamics of I3 excited in the photoelectron
ejection experiments on I3

-.
The main difficulty with implementing these semiclassical

methods arises due to the rapid oscillation of the integrand in
eq 12, for example, between positive and negative values in
various regions of initial phase space point (P,Q). In these
rapidly oscillatory regions contributions from near-by trajectories
should add destructively to give only a vanishingly small
contribution to the final integral. The integration over points
(P,Q) which we accomplish by summing over the ensemble of
trajectories thus requires a sufficiently dense packing of
trajectories in such regions to accurately represent this cancel-
lation. The primitive implementation of a grid or Monte Carlo
based approach thus wastes much effort propagating trajectories
from such regions only to have them add destructively to
represent zero.

M4 QQ ) NMPQ M4 PQ ) -D(t)MQQ (10)

M4 QP ) NMPP M4 PP ) -D(t)MQP (11)

f F,Iv
SC (t) ) ∫ dP

(2πp)d
dQ〈øIv|PtQt〉C(P,Q,t) ×

exp[ i
p
S(P,Q,t)]〈PQ|øIv〉 (12)

〈PQ|øIV〉 )
NV

R (2γ

π )1/4

exp[-γR2δ(Q - X0)
2] ×

exp[-δP2/2p2] exp[iR2δP(Q - X0)]∑
n)0

V

(R2δ)(n+1)/2cnPn(g)

(13)

exp[- i
p
ĤFt] )

∫ dP

(2πp)d
dQ|PtQt〉C(P,Q,t) exp[ i

p
S(P,Q,t)]〈PQ| (7)

〈x|PtQt〉 ) (2γ
π )d/4

exp[-γ(x - Qt)
2 + i

p
Pt‚(x - Qt)] (8)

C(P,Q,t) )

{det[12(MPP + MQQ - 2γipMQP + i
2γp

MPQ)]}1/2
(9)
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The situation with a semiclassical integrand like that in eq
12 is even more troublesome. The phase factor in the integrand
exp[iθ(P,Q)/p], say, becomes a rapidly oscillatory function of
(P,Q) because the phase,θ(P,Q), varies with (P,Q) and dividing
by a smallp amplifies these variations into rapid oscillations
of the phase factor. In stationary phase regions where the rate
of change ofθ(P,Q) with (P,Q) remains sufficiently small there
will be constructive interference between trajectories giving
nonvanishing contributions. Outside these stationary phase
regions, however, the phase starts to change and the lowest order
variation in phase is easily shown to be determined by the
monodromy matrixes MQ,P ) ∂Qt/∂P, for example. In the
classical dynamics of anharmonic many-body systems such
quantities can become very large very quickly as trajectories
become exponentially unstable with respect to variations in their

initial conditions in classically chaotic regions4,17-26 Semiclas-
sical expressions like that in eq 12 usually involve weighting
trajectory contributions by quantities such asC(P,Q) which
depend on potentially diverging monodromy factors. As dis-
cussed above these explosive monodromy factors also appear
exponentially in the phase factor so the cancellation of their
contribution is crucial.

Several approaches for handling the cancellation of nonsta-
tionary trajectories and removing their explosive consequences
in systems exhibiting strongly chaotic classical dynamics have
recently been presented.14,18-25 All these methods are based on
the ideas of stationary phase filtering which were developed
during the 1980’s when attempts were made to use path integral
Monte Carlo methods to compute fully quantum real time
correlation functions.27-31

Figure 3. Propagation of initial harmonic I3
- ground vibrational state on the photoexcited I3 DIM potential surface. Surface of solid lines is

propagated using the bare Herman-Kluk semiclassical algorithm. The dashed surface is the full quantum wave function propagated using split
operator FFT methods. The wave functions are plotted as functions of symmetric and antisymmetric stretch normal modes in Ångstroms.
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The particular method we have found convenient to imple-
ment is that due to Herman22,23 and we now present a brief
summary of the approach and demonstrate how it remedies the
serious problems arising from classical chaos even in a system
as simple as the two coupled anharmonic stretching modes of
I3.

The disasterous effects of classical chaos on the straightfor-
ward implementation of semiclassical expressions such as that
in eq 12 for I3 can be seen very clearly in Figure 3 where we
compare the full quantum and semiclassical time dependent
normalized wave function densities for symmetric and anti-
symmetric stretch coordinates of I3 produced after photoelectron
ejection from I3-. The initial Gaussian density produced during
the Franck-Condon excitation of our harmonic model of I3

-

starts out on the attractive wall of the I3 surface with the
symmetric stretch coordinate extended relative to the equilibrium
geometry of I3 due to the differences in equilibrium bondlength
for the ionic and neutral species which are accurately produced
by our model surfaces.

This nonequilibrium excited state distribution thus first
compresses in the symmetric stretch and then as it extends in
this direction the density also shows elongation in the antisym-
metric stretch direction due to the strong anharmonic couplings
between these modes present in our DIM model I3 surface.

In Figure 4 we present the distribution of classical trajectory
energies for various coherent state basis set width parameters
γ. We see that as this basis set width parameter is varied, the
energy distribution of our classical trajectory ensemble changes
considerably. The value of this parameter we used in most of
our calculations wasγ ) 125 Å-2. This value gives a narrow
energy distribution with a small tail extending above the smallest
dissociation energy of our potential (Danti ∼ 0.2 eV).

The longer time wave functions (t > 400 fs) presented in
Figure 3 show a serious discrepancy between the wave function
obtained from the bare application of the semiclassical coherent
state basis set approach and the exact wave function. These
semiclassical results at the longer times show wave function
fragmentation resulting from a few trajectories in the high energy
tail of the distribution in Figure 4 exhibiting large amplitude
motions. These high energy trajectories rapidly become unstable
with respect to variations in their initial conditions so the

magnitudes of theirC(P,Q,t) weights in the bare semiclassical
expression (eq 12) become overwhelming. In Figure 5a we show
the time history of the kinetic, potential, and total energy
computed using the bare semiclassical wave function and the
fully quantum result. As expected, beyond 400 fs, the semiclas-
sical energy components deviate dramatically from the exact
results and the total energy of the bare semiclassical propagated
wave function shows serious conservation problems. Not
surprisingly, since the ensemble average is becoming dominated
by the unstable high energy components due to their rapidly
growing C(P,Q,t) factors, the energy trends upward to the
average of these high energy trajectories (see Figure 4).

If we were free to increase the ensemble size without bound
the contribution from these unstable trajectories would eventu-
ally be approximately canceled by interference with other
unstable trajectories since they eminate from nonstationary
regions of phase space as discussed earlier. Such an approach
is in general numerically impractical as it requires the cancel-
lation of very large weights with different signs.

The approach adopted in the so-called “integrand condition-
ing” or “preaveraging” methods attempts to average these large
interferring weights over many close lying trajectories by
assuming a linear or quadratic variation of the phase around a
trajectory, and within this approximation intergrating the weight
analytically to obtain a “pre-averaged” weight which no longer
oscillates wildly.18,19-21,23,32,33. Typically these methods first
multiply the integral being evaluated by unity represented as a
normalized integral of a Gaussian in the difference between the
original integration variables and the preaveraging Gaussian
integral variables. If the widths of these preaveraging Gaussians
are made small enough, the phase of the original integrand
can be expanded to low order in the difference variables and
the resulting Gaussian integrals performed analytically to give
an averaged weight (see for example refs 22 and 23 for de-
tails).

Figure 4. Classical trajectory energy distributions for various values
of coherent state parameterγ for propagation on I3 surface. The I3
potential minimum is zero energy and the negative energies are due to
the low energy resolution of our histogram. The dissociation energy
of our model is indicated by the arrow. Values ofγ in Å-2 displayed
areγ ) 25. (solid),γ ) 125. (long dashes),γ ) 525. (short dashes),
γ ) 825. (dots). In our calculations we employ a value ofγ ) 125,
which gives a trajectory energy distribution with a smaller high energy
tail to reduce the rapid growth of chaotic trajectories in our ensemble.

Figure 5. (a) Comparison of time dependence of total quantum system
energy and kinetic and potential components computed using full
quantum propagation (curves add to give total energy conservation),
and results computed using the bare Herman-Kluk semiclassical
approach which show serious energy conservation problems and
divergence from exact quantum results beyond 300-400 fs. (b) Similar
comparison to a only here results from preaveraging semiclassical
calculations show much better energy conservation and comparison
with full quantum results.

Vibrational Dynamics of the I3 Radical J. Phys. Chem. A, Vol. 103, No. 47, 19999557



The main advantage of the specific preaveraging approach
developed by Herman22,23 is that it preserves the shape of the
fixed width coherent state basis set used to represent the time
evolving wave function. This is accomplished by changing the
integration variables in the semiclassical expression like eq 12
from the trajectory initial phase space point (P,Q) to the final
point variables (Pt,Qt), the Jacobian of this transformation is
unity. The integrand conditioning Gaussian integrals are then
introduced in displacements of the final points of the trajectories.
Thus we multiply our semiclassical expression by the following
representation of unity

By choosing these preaveraging Gaussians to be sufficiently
narrow (making thecP

k and cQ
k appropriately large for the

various degrees of freedom,k) we can truncate the expansion
of the phase of the semiclassical integrand in final point
displacements to low order and perform the preaveraging
integrals analytically. The final result is obtained by returning
to an expression involving integrals over trajectory initial
conditions but the weights of the different trajectories must be
determined by reverse propagating the auxiliary trajectory
stability equations from the final points reached by each
trajectory. For the results reported here we have employed
Herman’s first order preaveraging form in which an initial
function whose coherent state representation has the form
〈PQ|ψ0〉 ) |〈PQ|ψ0〉| exp[iθ0/p] is propagated according to the
result

Here the exponent in the preaveraging weight factor has the
form

For the coherent state basis set we find that the phase derivatives
in the above expression are the components of the following
vectors

and

In these expressions we assume that all terms which do not
contain the time reversed monodromy matrixes (∂Q/∂Pt, for
example) are small and can be ignored compared to these factors
which grow exponentially in systems exhibiting chaotic dynam-
ics.

The more conventional approach,20 on the other hand,
introduces the preaveraging Gaussians in initial point displace-

ments resulting in a travelling coherent state basis set in which
the coherent state widths vary in different ways along different
trajectories. If the coherent state basis elements get very narrow
many trajectories may be needed to represent the dynamical
wave function in these regions. Generally with this approach,
however, the preaveraged weights of the trajectories associated
with these narrow coherent state basis elements are small so
they make little contribution anyway. This deterioration of the
basis set is avoided with Herman’s frozen Gaussian approach.

The approach we use to implement preaveraging can thus be
summarized as follows: (1) Trajectory initial conditions (P,Q)
are first sampled from the distribution|〈PQ|ψ0〉|. Each initial
condition generated in this way is given an initial weight
exp[iθ0(P,Q)/p]. (2) Next these trajectories are evolved classi-
cally to phase space points (Pt,Qt) at time t. At this point we
evaluate the coherent state representation of whatever function
concerns us for our time correlation function. Along each
trajectory we compute the classical actionS and weight each
trajectory’s contribution by exp[iS/p]. (3) Now we must compute
the preaveraging weight based on the time reversed monodromy
factors appearing in eq 17. This is accomplished by setting the
monodromy matrixes to the appropriate unit or zero matrixes
at time t and reverse time integrating eq 10 backt ) 0. This
reverse time integration requires the evaluation of the Hessian
at all points along each classical trajectory. It can be shown23,34

that theC(P,Q,t) weighting factors can be computed from these
reverse propagated monodromy matrixes according to the
following result

with M̃QP
(ij ) ) ∂Qi/∂Pt

j for example. With this result the mono-
dromy matrixes need only be propagated in the reverse direction.
We can thus finally weight each trajectory’s contribution by
the C(P,Q,t) and preaveraging weight factors according to eq
15 to obtain our final results.

In strongly chaotic systems it may prove more fruitful to
incorporate the positive definite, rapidly damping preaveraging
weight factor exp[-∆θ2(P,Q)] into the importance sampling
Monte Carlo procedure which we use to integrate over trajectory
initial conditions. We are currently exploring such an approach
for application to many body systems.

For studying our excited I3 vibrational dynamics probed in
I3

- photodetachment experiments; however, the straightforward
preaverage weighting procedure described above provides a
reliable way to implement semiclassical expressions. In Figure
6, for example, we show that the spurious fragmentation of the
wave function observed with the bare application of semiclas-
sical propagation is completely remedied by use of the preav-
eraging procedures discussed above. The spurious effects of the
high energy components of our ensemble which should be con-
trolled by interference are effectively removed by the preaverage
weighting procedure. We also see from Figure 5b a dramatic
improvment in the time dependence of the energy components,
and in energy conservation using this preaveraging approach.

We conclude this section with an observation on the relative
amount of work involved in the semiclassical calculation of the
thermal averaged time correlation given in eqs 5 and 12 as
compared to its fully quantum mechanical calculation. As a
result of our assumption that the initial states are prepared by
exciting a thermal distribution of harmonic oscillator vibrational
states in the ground electronic state well, each of these initial
states has the form of a product of Gaussians times polynomials

∏
k)1

d (cP
kcQ

k

π2 )1/2

∫dpt
k∫dqt

k exp[-cP
k(Pt

k - pt
k)2] ×

exp[-cQ
k (Qt

k - qt
k)2] ) 1 (14)

|ψt〉 ) ∫ dP

(2πp)d
dQ|Pt,Qt〉C(P,Q,t) exp[ i

p
S(P,Q,t)] ×

exp[-∆θ2(P,Q,t)]〈PQ|ψ0〉 (15)

∆θ2(P,Q,t) )

∑
k)1

d {( 1

4p2cP
k)( ∂θ

∂Pt
k)2

(P,Q,t) + ( 1

4p2cP
k)( ∂θ

∂Qt
k)2

(P,Q,t)} (16)

∂θ
∂Qt

) (∂θ0

∂Q
- P)T

∂Q
∂Qt

+ (∂θ0

∂P)T
∂P
∂Qt

(17)

∂θ
∂Pt

) (∂θ0

∂Q
- P)T

∂Q
∂Pt

+ (∂θ0

∂P)T
∂P
∂Pt

(18)

C( P,Q,t) )

{det[12(M̃PP + M̃QQ + 2γipM̃QP - i
2γp

M̃PQ)]}1/2
(19)
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in the various normal modes of the ground state surface. For
the full quantum calculation of the thermally weighted sum of
correlation functions in eq 5 we must take each of the different
thermally accessible initial states, evolve them subject to the
nuclear Hamiltonian of the excited electronic state, and finally
overlap the evolved function at timet with its initial state to
obtain the component signal associated with this particular initial
state. Correlation functions computed in this way must finally
be weighted with the appropriate Boltzman factors and added
to give the total correlation function as in eq 5. Thus if there
are n thermally accessible states, we need to performn
propagations to construct our fully quantum thermal average.

For the semiclassical calculation described above, on the other
hand, the propagation of all the different harmonic oscillator

initial states can be accomplished by a SINGLE semiclassical
propagation from the product Gaussian ground state initial dis-
tribution of position and momentum parameters (see the expo-
nential factors in eq 13). Each of the different state contributions
in this semiclassical representation of the dynamics is simply
obtained by multiplying each trajectory’s contribution by the
appropriate product polynomials (see the polynomial factors in
eq 13), and their complex conjugates, in the initial and final
phase space points of the given trajectory and adding these
trajectory contributions to the ensemble average. There is thus
a qualitatively different amount of effort required for these quan-
tal and semiclassical calculations due to fundamental differences
in the nature of the quantal and semiclassical propagators and
how they evolve wave functions. The same potential for savings

Figure 6. Propagation of initial harmonic I3
- ground vibrational state on the photoexcited I3 DIM potential surface. Surface of solid lines is

propagated using the preaveraging approach for semiclassical algorithm. The dashed surface is the full quantum wavefunction propagated using
split operator FFT methods. The wavefunctions are plotted as functions of symmetric and antisymmetric stretch normal modes in Ångstroms.
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in the semiclassical calculation of thermal averaged time
correlation functions exists when ever the initial states can be
written as a product of functions in the various coordinates and
fast varying pieces of these functions can be pulled out as an
initial phase space distribution for the parameters in a coherent
state basis set representation and the remainder of the initial
state functions are incorporated in multiplicative quantities to
be averaged over initial and final points of classical trajectories
as in eq 12. In future work we will explore the application of
these ideas to study rotational dynamics.35

3. Results and Discussion

In Figure 7 we present our calculated thermal averaged time
correlation functions as defined in eq 5 for the ground-state I3

vibrational dynamics excited as a result of photoelectron
detachment from ground-state I3

-. For comparison we present
the correlation function obtained from full quantum calculations
as well as our preaverage weighted semiclassical results.
Generally, the agreement between these calculated correlation
functions is very good with the semiclassical results reproducing

the general periodicity very accurately and smoothing out some
of the finer details of the fully quantum signal. In the bottom
part c of this figure we also compare the real part of the
correlation function obtained by setting theC factor trajectory
stability weights to unity. This is a commonly used approxima-
tion36-38 which gives considerable numerical savings in semi-
classical calculations. Unfortunately, as we see from this figure,
the time correlation function obtained with this approximation
for the vibrational dynamics of our I3 system is really quite
poor.

The time signals presented in Figure 7 can be transformed to
energy space according to eq 4 giving the distributions of pho-
toejected electron kinetic energies which we compare with the
experimental results of Neumark and co-workers in Figure 8a.
The calculated spectra presented in this figure were generated

Figure 7. Parts a and b show real and imaginary parts of thermal
averaged time correlation functionφIF(t;â) defined in eq 5 forT ) 205
K. Solid curves are full quantum calculations and dashed curves are
preaveraged semiclassical calculations. Part c compares real part of
correlation function computed with full quantum (solid curve), preav-
eraged semiclassical (dashed curve), and results obtained when the
trajectory stability factors are ignored (dotted curve).

Figure 8. (a) Comparison of I3- photoelectron spectrum calculated
with full quantum nuclear propagation (solid curve), preaveraged
semiclassical nuclear propagation (dashed curve), and experimental
curves (dotted curve with+ symbols). (b) Comparison of full quantum
and preaveraged semiclassical contributions to total signal. Upper curves
are total signals, the three sets of component curves below these are
contributions starting from the ground vibrational state (S,A) ) (0,0)
(largest components), contributions from low initial symmetric stretch
excitations, i.e.,∑n)1

3 (n,0) (bimodal contributions), and contributions
from low initial anti-symmetric stretch excitations, i.e.,∑n)1

3 (0,n)
(band with shifted peaks). (c) Same as that in part a only here we also
include the result obtained when trajectory stability factors are ignored
(shifted dotted curve).
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assuming a Gaussian photoexcitation pulse width ofτ ) 100
fs. The peak positions and band shape of the full quantum and
semiclassical results agree with one another very closely and
the overall shape of these calculated curves is in near quantitative
agreement with the experimental results. The main deviations
between the calculated and experimental results apparent in this
figure are on the low energy side of the band where the
calculated curves display a little too much structure and the peak
positions may be shifted slightly. Generally, however, the close
agreement with experiment is quite good.

In part b of Figure 8 we show a break down of our calculated
signals into contributions from various initial states with in the
thermal distribution. We see that the general shape of the final
band results not only from contributions from the (S) 0, A )
0) or (0,0) ground vibrational state but there are also significant
contributions from symmetric stretch excitations (n,0) which
tend to broaden the band as they give contributions on either
side of band center, and antisymmetric stretch excitations (0,n)
which give slightly shifted contributions near the middle of the
band. On the basis of these observations it is clear that several
factors could be contributing to the small differences between
the experimental and calculated spectra described above: First,
with in the harmonic I3- initial surface approximation the hot
bands line up, rather than being displaced due to anharmonici-
ties. This will of course result in too much structure in the final
spectrum. Next, uncertainty in the difference between the
symmetric and antisymmetric stretch frequencies of the I3

-

initial surface can lead to an inaccurate representation of the
interference between the peaks and troughs of the various
contributions to the spectrum. Further, we have ignored the
bending motions of the molecule and overlapping different bend
vibration progressions could easily fill in the spaces between
the bands we see in our restricted calculation results, thus
smearing much of the detailed structure we observe. Our neglect
of molecular rotations of course has a similar effect and
including such motions would further smear out the features
leading to closer agreement with experiment. Finally, if the
shape of our DIM I3 surface was inaccurate, our dynamics over
this surface would fail give a good representation of the Franck-
Condon factors responsible for controlling the amplitude of the
various hot band contributions to the spectrum. Given all these
potential problems, the fact that we get a spectrum which so
closely resembles the experimental results is quite remarkable.

In the bottom part c of Figure 8 we compare the spectra from
our quantum and semiclassical calculations with that obtained
from ignoring theC trajectory stability factors. Not surprisingly,
just as with the time correlation functions, leaving out these
factors which account for the variation in semiclassical path
space volume around each classical trajectory leads to significant
errors.

4. Conclusions

In this paper we have presented a model potential describing
the symmetric and antisymmetric stretch motions of a linear I3

molecule obtained from a semiempirical diatomics-in-molecules
approach. This model system has been employed as a test of
various semiclassical methods for propagating nuclear vibra-
tional wavefunctions over this highly anharmonic, weakly bound
potential surface.

We have demonstrated the problems with implementing a
bare semiclassical approach which involves a straightforward
weighting of the contributions from various trajectories by a
semiclassical approximation to the volume of path space around
each classical trajectory. These approximate path space volumes

are related to trajectory stability with respect to changes in initial
conditions. In regions where the classical trajectories become
chaotic this semiclassical approximation to the local path space
volume thus diverges and we have demonstrated the disasterous
effect of these chaotic trajectories at longer times in the
application of the bare semiclassical approach with a finite
ensemble of trajectories to this realistic two-dimensional model
problem.

Contributions from these unstable trajectories should interfere
destructively with other trajectories eminating from these chaotic
regions as the integrand is highly nonstationary with respect to
variations in trajectory initial conditions over which we integrate
to obtain the semiclassical propagator. We have shown through
comparison with exact full quantum calculations that the first
order stationary phase filtering or preaveraging approach
proposed by Herman22,23 provides a simple to implement,
potentially quite general, and extremely effective solution to
this problem for our model system. We have further shown that
the alternative approach to handling the contributions from
chaotic trajectories in which we simply assume that the path
space volume associated with all trajectories is a constant,
independent of trajectory, yields poor dynamical results for this
realistic problem.

Finally by comparing the ejected photoelectron kinetic energy
distributions calculated from our semiclassical and quantum
calculations with the experimental results of Neumark1 we have
demonstrated the remarkable accuracy of our semiempirical I3

potential which gives reasonable estimates of the binding
energies and stretch vibrational frequencies with no adjustable
parameters.
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6. Appendix

The time dependent perturbation theory approach we outline
here to obtain the expression we use to calculate the photo-
electron spectrum is very similar to that presented by Heller
for the calculation of the Raman spectrum.39 This approach is
commonly used in many spectroscopic applications.40

The time dependent Hamiltonian describing the molecular
ion in a classical radiation field isĤ(t) ) Ĥmolec- µ̂‚ε(t) where
µ̂, for our molecular photoionization example, is the molecular
ion dipole operator,ε(t) is the time dependent electric field,
and Ĥmolec ) K̂N(P̂) + Ĥel(p̂,r̂ ,R̂) is the molecular ion Hamil-
tonian composed of the usual nuclear kinetic and electronic
contributions. As usual we employ the Born-Oppenheimer
adiabatic electronic eigenstatesΦJ(r ,R) defined for a given
nuclear configuration byĤel(p̂,r̂ ;R)ΦJ(r ,R) ) EJ(R)ΦJ(r ,R) as
a basis set to represent the electronic distribution for nuclear
configurationR.

The time dependent wave function of the molecular ion
coupled to the radiation fieldΨ(r ,R,t) satisfies

ip
∂

∂t
Ψ(r ,R,t) ) Ĥ(t)Ψ(r ,R,t) (20)
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Writing the solution of this equation in terms of the above
adiabatic electronic basis set as

and making the Born-Oppenheimer approximation we find that
if we arrange the nuclear coefficient functionsøJ(R,t) into a
vectorX(R,t) they satisfy the following matrix equation

whereĤ(t) ) Ĥ0 + V(t) is a matrix of nuclear Hamiltonians,
the time independent part of which has elements [Ĥ0]IK ) ĤKδIK

whereĤK ) K̂N + EK(R) is the Hamiltonian governing nuclear
motion over the Born-Oppenheimer surfaceEK(R). The time
dependent part of the matrix has elements[V(t)]IK ) -ε(t)‚M IK(R)
which describe how the radiation field couples the nuclear
coefficient functions on different electronic surfaces. Here
M IK(R) ) 〈ΦΙ|µ̂|ΦK〉(R).

The first order time dependent perturbation theory solution
of this system of equations is readily obtained as

We assume that the system is prepared in some initial Born-
Oppenheimer vibronic eigenstateøIv(R)ΦI(r ,R) whereøIv are
the vibrational eigenstates of the nuclear Hamiltonian (specified
by the vectorv of vibrational quantum numbers) for electronic
state I, i.e., ĤI(R)øIv(R) ) EIvøIv(R) so the initial nuclear
coefficient vector,X(R,0) has only a single nonzero entry,øIv(R)
as theIth component function. Thus to first order in perturbation
theory eq 23 gives that the nuclear coefficient function for the
Jth electronic state at timet will be

For our photoelectron experiment described in subsection 2.2
ΦJ ) ΦFε so ĤJ(R) ) ĤF(R) + ε. Thus the probability of
observing a photoelectron with kinetic energyε and depositing
the system in neutral stateF at time t from a molecular ion
prepared in stateIv before timet0 when a radiation field was
applied is obtained from the square of the above amplitude as

In writing this result we have made the Condon approximation
and assumed that the dipole matrix elements vary weakly with
nuclear configuration soVIFε, etc., is approximately independent
of R.

We further suppose that the excitation pulse at frequencyω
has a Gaussian time profile with experimental width parameter
τ, so thatVIFε(t) ) AIFε exp[-t2/2τ2] cosωt. Transforming the
double time integral to sum and difference times, and extending

t0 to -t, we can perform the integration over the sum variable
analytically and keeping only the resonant term we find the
infinite time probability of observing a photoelectron with
energyε resulting from the transitionF r Iv is obtained as

Finally the total probability,Pâ(ε) of observing ejected
photoelectrons with kinetic energyε at long time if the
molecules are initially in thermal equilibrium at a temperature
T, which is proportional to the signal in these experiments, is
obtained by summing over a Boltzman distribution of initial
states and adding the signal contributions from all possible final
states, thus

whereâ ) 1/kBT.
In our calculations we assume that the ground electronic state

of our molecular anion system is well separated from any excited
electronic states so the Boltzman contributions from these higher
energy electronic states can be ignored and we need only sum
over initial excited vibrational states on the ground electronic
state surface. Further, we will suppose that the final excited
electronic states of interest, which involve only the ground state
of the neutral molecule and the ejected electron with various
amounts of kinetic energy, are sufficiently well separated from
other excited neutral states so these higher excited final states
can be neglected for the ground-state to ground-state band we
wish to study.

Note in this work we assume that the quantities|AIFε|2 are
weakly varying functions of electronic kinetic energyε,
compared to the time integral in eq 26. Finally, we have adjusted
our calculated spectrum so that its peak amplitude matches
experiment for purpose of comparison.

References and Notes

(1) Taylor, T. R.; Asmis, K. R.; Zanni, M. T.; Neumark, D. M.J. Chem.
Phys.1999, 110, 7607.

(2) Batista, V. S.; Coker, D. F.J. Chem. Phys.1996, 105 4033.
(3) It is possible that the ground state ofI3 hasMJ ) (3/2. Some of

the states with this angular momentum projection will have the same
dissociation limit as theMJ ) (1/2 which we assume to be the ground
state in this analysis. These states are currently under investigation and
may lie close in energy to our assumed ground state. The experiments may
probe a statistical distribution of the various states.

(4) Ellison, F. O.J. Am. Chem. Soc.1963, 85, 3540.
(5) Tully, J. C. In Semiempirical Methods of Electronic Structure

Calculation, Part A: Techniques; Segal, L. A., Ed.; Plenum: New York,
1977.

(6) Ruhman, S.; Lynden-Bell, R.; Kosloff, R.; Vala, J.J. Chem. Phys.
1998, 109, 9928.

(7) Sato, H.; Hirata, F.; Myers, A. B.J. Phys. Chem. A1998, 102,
2065.

(8) Feit, M. D., Jr.; Fleck, J. A.; Steiger, A.J. Comput. Phys.1982,
47, 412.

(9) Kosloff, R. J. Phys. Chem.1988, 92, 2087.
(10) Herman, M. F.; Kluk, E.Chem. Phys.1984, 91, 27.
(11) Kluk, E.; Herman, M. F.; Davis, H. L.J. Chem. Phys.1986, 84,

326.
(12) Kay, K. G.J. Chem. Phys.1994, 100, 4377.
(13) Kay, K. G.J. Chem. Phys.1994, 100, 4432.
(14) Kay, K. G.J. Chem. Phys.1994, 101, 2250.
(15) Kay, K. G.J. Chem. Phys.1997, 107, 2313.
(16) Madhusoodanan, M.; Kay, K. G.J. Chem. Phys.1998, 109, 2644.

Ψ(r ,R,t) ) ∑
J

øJ(R,t)ΦJ(r ,R) (21)

ip
∂

∂t
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